329 research outputs found

    Effect of haptic supplementation on postural stabilization: A comparison of fixed and mobile support conditions

    No full text
    International audienceIt is well known in the literature of haptic supplementation that a "light touch" (LT) with the index finger on a stable surface increases postural stability. In view of potential application in the domain of mobility aids, it should however be demonstrated that haptic supplementation is effective even when provided by an unstable stick support. The present study aimed to explore the stabilizing effect of a three-digit "light grip" (LG) of different supports (fixed or mobile stick) in young people. Eleven participants (M = 25.9 years) were tested in an upright standing task in six experimental conditions in which the mobility of the given support and its resistance in opposite direction to the body movement were manipulated. The RMS variability and the range of postural oscillations were measured. The results confirmed that the stabilizing effect of haptic supplementation is independent from the nature of the support (fixed or mobile) when sufficiently large sway-related contact forces on the fingers are provided. Future applications of this "mobile stick paradigm" to complex situations while targeting different groups of participants may help to approach everyday life situations in which an informational stick could potentially be of assistance to gain stability and mobility

    A KINEMATIC AND DYNAMIC ANALYSIS OF ELITE ALPINE SKIERS

    Get PDF
    The knowledge of the internal forces and torques acting on a joint during a physical activity as well as a clear description of the motion performed by an elite athlete is of top most interest for rehabilitation, teaching or training purposes. Nevertheless, the motion of the athletes can be strongly affected by the evolution of the equipment design. For example, great changes in terms of angular motion and ground reaction have been revealed in alpine skiing when comparing conventional and carving turns (Yoneyama, 2000). More recently, MCJller and Schwameder (2003) have carried out a comparative study between conventional and carving ski turn based upon kinematics, plantar pressure and EMG records. Coupling 3D video analysis and forceplate acquisition, the present work aims at recording the displacements of whole body segments as well as ground reaction in order to analyze the turning motion of elite alpine skiers

    Bimanual training in stroke: How do coupling and symmetry-breaking matter?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The dramatic consequences of stroke on patient autonomy in daily living activities urged the need for new reliable therapeutic strategies. Recently, bimanual training has emerged as a promising tool to improve the functional recovery of upper-limbs in stroke patients. However, who could benefit from bimanual therapy and how it could be used as a part of a more complete rehabilitation protocol remain largely unknown. A possible reason explaining this situation is that coupling and symmetry-breaking mechanisms, two fundamental principles governing bimanual behaviour, have been largely under-explored in both research and rehabilitation in stroke.</p> <p>Discussion</p> <p>Bimanual coordination emerges as an active, task-specific assembling process where the limbs are constrained to act as a single unit by virtue of mutual coupling. Consequently, exploring, assessing, re-establishing and exploiting functional bimanual synergies following stroke, require moving beyond the classical characterization of performance of each limb in separate and isolated fashion, to study coupling signatures at both neural and behavioural levels. Grounded on the conceptual framework of the dynamic system approach to bimanual coordination, we debated on two main assumptions: 1) stroke-induced impairment of bimanual coordination might be anticipated/understood by comparing, in join protocols, changes in coupling strength and asymmetry of bimanual discrete movements observed in healthy people and those observed in stroke; 2) understanding/predicting behavioural manifestations of decrease in bimanual coupling strength and/or increase in interlimb asymmetry might constitute an operational prerequisite to adapt therapy and better target training at the specific needs of each patient. We believe that these statements draw new directions for experimental and clinical studies and contribute in promoting bimanual training as an efficient and adequate tool to facilitate the paretic upper-limb recovery and to restore spontaneous bimanual synergies.</p> <p>Summary</p> <p>Since bimanual control deficits have scarcely been systematically investigated, the eventual benefits of bimanual coordination practice in stroke rehabilitation remains poorly understood. In the present paper we argued that a better understanding of coupling and symmetry-breaking mechanisms in both the undamaged and stroke-lesioned neuro-behavioral system should provide a better understanding of stroke-related alterations of bimanual synergies, and help clinicians to adapt therapy in order to maximize rehabilitation benefits.</p

    Influence of Force-Length Relationship and Task-Specific Constraints on Finger Force-Generating Capacities

    Full text link
    Grip strength loss in extended and flexed wrist postures has been explained by reduced force-generating capacities of extrinsic finger flexor resulting from non-optimal length, owing to the force-length relationship. Recent works suggested that other muscles, especially wrist extensors, participate in this grip strength loss. The objective of this study was to clarify the role of the force-length relationship in finger force production. 18 participants performed maximal isometric finger force production during pinch grip (Pinch) and four-finger pressing (Press) tasks in four different wrist postures (extended, flexed, neutral, spontaneous). The maximum finger force (MFF), finger and wrist joint angles, as well as activation of four muscles were determined using dynamometry, motion capture, and electromyography. The force and length of the four muscles were estimated from joint angles and muscle activation using a musculoskeletal model. MFF decreased for flexed wrist during Pinch but remained stable across wrist postures during Press. The results suggested that the loss of pinch grip force in deviated wrist posture is partially related to force-length relationship of finger extensors. In opposition, MFF during Press was not influenced by the modulation of muscle capacities but was probably first limited by mechanical and neural factors related to finger interdependenceComment: Annals of Biomedical Engineering, 202

    Analysis of a Stretched Derivative Aircraft with Open Rotor Propulsion

    Get PDF
    Research into advanced, high-speed civil turboprops received significant attention during the 1970s and 1980s when fuel efficiency was the driving focus of U.S. aeronautical research. But when fuel prices declined sharply there was no longer sufficient motivation to continue maturing the technology. Recent volatility in fuel prices and increasing concern for aviation's environmental impact, however, have renewed interest in unducted, open rotor propulsion and revived research by NASA and a number of engine manufacturers. Recently, NASA and General Electric have teamed to conduct several investigations into the performance and noise of an advanced, single-aisle transport with open rotor propulsion. The results of these initial studies indicate open rotor engines have the potential to provide significant reduction in fuel consumption compared to aircraft using turbofan engines with equivalent core technology. In addition, noise analysis of the concept indicates that an open rotor aircraft in the single-aisle transport class would be able to meet current noise regulations with margin. The behavior of derivative open rotor transports is of interest. Heavier, "stretched" derivative aircraft tend to be noisier than their lighter relatives. Of particular importance to the business case for the concept is how the noise margin changes relative to regulatory limits within a family of similar open rotor aircraft. The subject of this report is a performance and noise assessment of a notional, heavier, stretched derivative airplane equipped with throttle-push variants of NASA's initial open rotor engine design

    Updated Assessment of an Open Rotor Airplane Using an Advanced Blade Design

    Get PDF
    Application of open rotor propulsion systems (historically referred to as "advanced turboprops" or "propfans") to subsonic transport aircraft received significant attention and research in the 1970s and 1980s when fuel efficiency was the driving focus of aeronautical research. Recent volatility in fuel prices and concern for aviation's environmental impact have renewed interest in open rotor propulsion, and revived research by NASA and a number of engine manufacturers. Over the last few years, NASA has revived and developed analysis capabilities to assess aircraft designs with open rotor propulsion systems. These efforts have been described in several previous papers along with initial results from applying these capabilities. The initial results indicated that open rotor engines have the potential to provide large reductions in fuel consumption and emissions. Initial noise analysis indicated that current noise regulations can be met with modern baseline blade designs. Improved blades incorporating low-noise features are expected to result in even lower noise levels. This paper describes improvements to the initial assessment, plus a follow-on study using a more advanced open rotor blade design to power the advanced singleaisle transport. The predicted performance and environmental results of these two advanced open rotor concepts are presented and compared

    Performance and Environmental Assessment of an Advanced Aircraft with Open Rotor Propulsion

    Get PDF
    Application of high speed, advanced turboprops, or "propfans," to transonic transport aircraft received significant attention during the 1970s and 1980s when fuel efficiency was the driving focus of aeronautical research. Unfortunately, after fuel prices declined sharply there was no longer sufficient motivation to continue maturing this technology. Recent volatility in fuel prices and increasing concern for aviation s environmental impact, however, have renewed interest in unducted, open rotor propulsion. Because of the renewed interest in open rotor propulsion, the lack of publicly available up-to-date studies assessing its benefits, and NASA s focus on reducing fuel consumption, a preliminary aircraft system level study on open rotor propulsion was initiated to inform decisions concerning research in this area. New analysis processes were established to assess the characteristics of open rotor aircraft. These processes were then used to assess the performance, noise, and emissions characteristics of an advanced, single-aisle aircraft using open rotor propulsion. The results of this initial study indicate open rotor engines have the potential to provide significant reductions in fuel consumption and landing-takeoff cycle NOX emissions. Noise analysis of the study configuration indicates that an open rotor aircraft in the single-aisle class would be able to meet current noise regulations with margin

    Initial Assessment of Open Rotor Propulsion Applied to an Advanced Single-Aisle Aircraft

    Get PDF
    Application of high speed, advanced turboprops, or propfans, to subsonic transport aircraft received significant attention and research in the 1970s and 1980s when fuel efficiency was the driving focus of aeronautical research. Recent volatility in fuel prices and concern for aviation s environmental impact have renewed interest in unducted, open rotor propulsion, and revived research by NASA and a number of engine manufacturers. Unfortunately, in the two decades that have passed since open rotor concepts were thoroughly investigated, NASA has lost experience and expertise in this technology area. This paper describes initial efforts to re-establish NASA s capability to assess aircraft designs with open rotor propulsion. Specifically, methodologies for aircraft-level sizing, performance analysis, and system-level noise analysis are described. Propulsion modeling techniques have been described in a previous paper. Initial results from application of these methods to an advanced single-aisle aircraft using open rotor engines based on historical blade designs are presented. These results indicate open rotor engines have the potential to provide large reductions in fuel consumption and emissions. Initial noise analysis indicates that current noise regulations can be met with old blade designs and modern, noiseoptimized blade designs are expected to result in even lower noise levels. Although an initial capability has been established and initial results obtained, additional development work is necessary to make NASA s open rotor system analysis capability on par with existing turbofan analysis capabilities

    The proinflammatory cytokine interleukin 18 regulates feeding by acting on the bed nucleus of the stria terminalis

    Get PDF
    The proinflammatory cytokine IL-18 has central anorexigenic effects and was proposed to contribute to loss of appetite observed during sickness. Here we tested in the mouse the hypothesis that IL-18 can decrease food intake by acting on neurons of the bed nucleus of the stria terminalis (BST), a component of extended amygdala recently shown to influence feeding via its projections to the lateral hypothalamus (LH). We found that both subunits of the heterodimeric IL-18 receptor are highly expressed in the BST and that local injection of recombinant IL-18 (50 ng/ml) significantly reduced c-fos activation and food intake for at least 6 h. Electrophysiological experiments performed in BST brain slices demonstrated that IL-18 strongly reduces the excitatory input on BST neurons through a presynaptic mechanism. The effects of IL-18 are cell-specific and were observed in Type III but not in Type I/II neurons. Interestingly, IL-18-sensitve Type III neurons were recorded in the juxtacapsular BST, a region that contains BST-LH projecting neurons. Reducing the excitatory input on Type III GABAergic neurons, IL-18 can increase the firing of glutamatergic LH neurons through a disinhibitory mechanism. Imbalance between excitatory and inhibitory activity in the LH can induce changes in food intake. Effects of IL-18 were mediated by the IL-18R because they were absent in neurons from animals null for IL-18R\u3b1 (Il18ra-/-), which lack functional IL-18 receptors. In conclusion, our data show that IL-18 may inhibit feeding by inhibiting the activity of BST Type III GABAergic neurons
    • …
    corecore